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Abstract. Sturm's chain technique for evaluation of a number of real roots of polynomials is applied 
to construct a simple algorithm for global optimization of polynomials or generally for rational 
functions of finite global minimal value. The method can be applied both to find the global minimum 
in an interval or without any constraints. It is shown how to use the method to minimize globally a 
truncated Fourier series. The results of numerical tests are presented and discussed. The cost of the 
method scales as the square of the degree of the polynomial. 
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1. Introduction 

Several algorithms have been devised to address the global minimization problem 
for functions of one variable. Some of them are of general nature (Cetin et al., 
1993; Hansen, 1979), while others are restricted to certain classes of functions 
as, for example, polynomials (Visweswaran and Floudas, 1992; Wingo, 1985). A 
large class of algorithms studies values of a function and/or its derivatives at given 
points and then moves according to the local properties found in order to arrive at 
points with lower function values (e.g., Cetin et al., 1993). Other methods construct 
globally valid lower bounds for the minimized function and proceed by refining 
these bounds (e.g., Visweswaran and Floudas, 1992). 

The method proposed here is closer in spirit to the second group of methods. 
To find the globally minimal value of the objective function f ( z ) ,  we examine the 
existence of real zeros for the shifted function: f ( z )  + "7 for several values of 7. 
The procedure is terminated, with given accuracy c, when the globally minimal 
value of f ( z )  + 7 is sufficiently close to zero i.e. the function f ( z )  + 7 + e has no 
real zeros whereas f ( z )  + 3' - E does have at least one of them. Finally we locate 
the position where f actually assumes this globally minimal value. The method is 
designed for a function of the form: f ( x )  = W ( z ) / V ( z )  where both W and V 
are polynomials. It is also assumed that the global minimum exists, which means 
that for W and V not having common divisors, all real zeros of V (if any) are of 
even multiplicity, and the sign of V in their vicinity is the same as the sign of W. 
This implies that V ( z )  has the same sign for all values of z. For simplicity we 
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assume it to be +. Because the limit of f in +ce should not be - e c ,  the leading 
term of V should have equal or greater degree than the leading term of W; or, 
if the leading term of V has lower degree than the leading term of W, then the 
leading coefficients should have the same sign and the leading exponents should 
differ by an even number. Of course, for V(x) = 1, the algorithm serves as a global 
minimizer for polynomials. 

Since f.v(x) =- f (x)  + 7 = [W(x) + 7V(x)]/V(x) has zeros if and only if 
W(x) + 7V(x) has zeros, one needs a test for the existence of real roots for 
polynomials. This can be achieved by Sturm's chain technique (van der Waerden, 
1991). The parameter 3' is then adjusted until fir(x) has its globally minimal value 
equal to zero. The position of the minimum can be derived from the last polynomial 
in the Sturm chain for this 7 value. 

2. The Algorithm 

For convenience, we include Sturm's theorem here (see for example van der Waer- 
den, 1991, for the proof). First, we define Sturm's chain. For a given polynomial 
X0, one forms the sequence of polynomials X1,. . . ,  Xr such that X~ = X o (the 
derivative of X0); then, for all i > 2, the polynomial - X i  is the remainder after 
dividing Xi-2 by Xi-1 (Euclidean algorithm): 

Xi-2 = Qi-lXi-1 - Xi (1) 

The divisions are continued until Xr-1 = QrXr. The sequence X1 , . . . ,  X~ is 
called Sturm's chain for X0. It is usually convenient to divide every element of 
Sturm's chain by the absolute value of its leading coefficient before proceeding 
to the next element. For a given number a, which is not a root of Xo, let w(a) 
be a number of sign changes in the sequence Xo(a),. . . ,  Xr(a). While counting 
sign changes, one should disregard zeros. Hence, for example, for the sequence: 
3, 2, - l, 0, 5,6, 0, - 2  the number of sign changes is 3. We will also need the limit 
values w(+oc) = lin~_~• w(a). They can easily be evaluated from the leading 
coefficients of the polynomials Xi. The sign of Xi for a -+ +oc is just the sign of 
the leading coefficient aims, whereas the sign for a -+ - c~  is that of ( -  l) ~ ~im~, 
where Xi(x) = z_,~=0~"'~' (~,~ x~ 

Sturm's theorem is: 
If b < c (b may be - c o  and c may be oc) and X0(b) r 0, Xo(c) r O, then 

the number of distinct real roots of X0 between b and c is equal to w(b) - w(c) 
(multiple roots are counted once). 

For example: 

X o ( x  ) : x 4 - l l x  3 + 41x 2 - 61x + 30 

x,(x  x3  x2+ x 614 
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34 191 
x 2 ( x ) -  x 2 -  T x  + 3--3- 

25 
x 3 ( x )  = x - 1-Y 

X4(X ) = 1. 

One can easily check that w ( - o c )  = 4 and w(cr = 0. Hence according to Sturm's 
theorem X0 has 4 real roots and indeed Xo(x) = (x - 1)(x - 2)(x - 3)(x - 5). 

The method proposed in this paper finds the global minimum of a rational 
function f in an interval [b, c] (b may be - 0 o  and c may be oc) by examining the 
existence of zeros of the shifted function f-~. Let us denote by 7 o the exact border 
value of 7, i.e. such that for every a > 0 the function f.yo+~ has no roots and also 
that there exists ~f > 0 that for every or, --(5 < a < 0 the function f.~+~ does have 
roots. For a given accuracy e, we find a lower bound 7_7_ and an upper bound ~ of 
the exact value 7 o (7_ < 70 < 7)  such that ~ - 7. < ~- 

The initial bounds are constructed in the following way. In the first case, i.e., 
when f has no zero and is positive in [b, c], we take ff = 0 and 7__ = - f ( x o )  where 
x0 is an arbitrary point in [b, c]. In the second case, i.e., when f has no zero and 
is negative, then 7__ = - f ( x o )  and ~ = - f ( x o )  -4- A, where A is chosen as a 
sufficiently large number so that there is no zero for f : .  The last case, i.e., when 
f has zeros in [b, c], we set 7_ = 0 and ~ = A where A is chosen, again, so that 
f :  has no zero in [b, c]. (See the algorithm below for details). Having established 
the initial values of 7__ and 7, we proceed by bisection. The existence of zeros is 

examined for 7 = �89 (7__ + 7)- If f i /has  zeros, then 7 becomes a new value for 7_. 
Otherwise 7 is a new value for 7. The iteration is terminated when 7 - 7 < ebi~. 

In the description of the algorithm below, we use the logical function ex is t (P)  
which has the value true if a polynomial P has real roots in the interval [b, c] and 
fa l se  otherwise. 

A l g o r i t h m  
Input:  polynomials W and V such that f =_ W / V  does have a global minimum 

interval [b, c] 
maximal error Ebis 
x0 e [b, c] 
initial increment A ~ 

i f  exist(W) then  7__ = 0 
e lse  7_ = -f(xo) 

e n d i f  
i f  7_ < 0 then  7 = 0 

e lse  A = A ~ 

7 = 7 - +  A 
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actex = e x i s t ( W  + 7V)  
unti l  not actex do 

A = 2 A  

7 = 7 + A  
actex = ex i s t (W  + 7V)  

e n d d o  
endif  
{ Initial bounds are 7__ and 7 } 
unti l  7 - 7_ < ebi~ do 

= (7  + 7_)/2 
if e x i s t ( W  + 7V) then 7_ = 7 

else 7 = 7 
endif  

e n d d o  
{ The globally minimal value - 7  0 is between the calculated values - 7  and -7_7_ } 

The algorithm above is robust, and we encountered no problems in applying it 
even to polynomials of very high degree. However, it converges with the rate of 
bisection method i.e. In~-~. Usually this is not a problem, since about sixty steps 

are required to achieve the accuracy of the globally minimal value ebi~ = 10 -15. 
Sometimes however, a higher accuracy is required or the degree of a polynomial is 
very high, and it is desirable to reduce the number of steps. Later in this section, we 
describe the procedure to use the much faster secant algorithm to find the globally 
minimal value. It works for polynomials and most rational functions but should be 
used with caution for some rational functions (see next section for discussion). 

Having found 7 and 7_, one can proceed to locate the global minimum position 
x ~ . First, we check whether the global minimum is at either of the endpoints b, c. 
This poses no problem because calculation of f (b)  and f (c) ,  and comparison with 
7 and 7, answers the question whether the global minimum occurs at b or c. 

In the following, we consider finding the position of the global minimum inside 
(b, c). This can be accomplished by using the Sturm chain technique for the poly- 
nomial X__0 = W + 7__V since it has zeros at positions that differ from x <> only 
by the computational error. The algorithm is again a bisection, but this t ime ,  it 
divides the interval [b, c] until a prescribed accuracy is achieved i.e. two numbers 
x__ his-tIt and z__ b~s-~gt are found so that the polynomial X__ 0 = W + 7_.V has zeros 
in (x  bis-lft, X b i s - r g t )  a n d  x__ b i s - r g t  - x__ b i s - l f t  < ex .  I n  this algorithm, the Sturm 

chain is always the same; only values of polynomials in the chain are calculated 
at different points. It should be stressed that the error of determining the position 
of the global minimum might be larger than ex unless the number of zeros of 
X__ 0 = W + 7-V in (b, c) is equal to the number of zeros of this polynomial in 
(x  bi~-lyt, xbi~-rgt). If there are only two zeros of X__ 0 in (b, c), i.e. x 1 and x 2, then 
x {> E (x__ l, x__2). The difference I x-- 1 - x- 2 I can be estimated from the cut Taylor 
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expansion for f ,  provided that the second derivatives at xbis-Ift and xbis-r#~ are 
practically the same and positive. The formula used for estimation of I z-- 1 - z- 2 I 
is 

8ebis S=v7  (2) 

where f "  is a second derivative of f at E 1 or  x2.  We have found no problem with 
using the above estimate of the separation of zeros as an upper bound on the error 
of the position of the global minimum, even for very ill-conditioned problems. 
Nevertheles, one can always use the Sturm technique to locate both zeros of X__ 0 to 
ensure correctness of error estimation. 

In the following, however, we show a much faster way of locating the global 
minimum (minima) by examination of the last polynomial in the Sturm chain for 
W + 7_V. For simplicity, we start by considering the exact value 7<>. The globally 

minimal value of the polynomial X0 ~ - W + 7<>V is equal to 0. If there is a root 
x <> of X0 ~ in the interior of [b, c], then x <> is also a local minimum of X0 ~ (X0 ~ is 
nonnegative in [b, e]). This means that (x - x <>) is a common divisor of X0 ~ and 

X1 ~ = X0 ~ Since the last polynomial in Sturm's chain X~ ~ is the greatest common 
divisor Of X0 ~ and X~, it is divisible by (x - x<>). In other words, any interior root 
of X0 ~ is also a root of X~. On the other hand, of course, any root of X~ ~ is also 
a root of X0 ~ . Hence, all the interior global minima of f can be located by finding 
roots of the last polynomial X~. Practically, we do not know the exact value of 
7 <> hence coefficients of XT+ 1 in the Sturm chain for X__ 0 _= W + 7_V are small 
in absolute value rather than being exactly zero. Often X_.__~ is linear; if not, its root 
z__ or roots z_l,... , x s can be found by any standard technique for polynomials, 
including Sturm's chain technique. It may also be helpful to check the number of 
zeros of X_ o. If it has, for example, one zero and also X___oo(b ) < 0, then there is no 
point in examining the last polynomial in the Sturm chain X_____r_~ because the global 
minimum is apparently at b. 

The fact that the Sturm chain has fewer elements for 7 = 7<> can be used 
for constructing a faster algorithm to find 7<>. If X~ is the last polynomial in the 
Sturm chain for 7 = 7 ~>, then all coefficients c~T+l,j(7) of the polynomial X~+I 
are zero for 7 = 7<>. Let aL(7) be the leading coefficient of X~+I calculated 
for W + 7V (this is the coefficient obtained by dividing the polynomials in the 
Euclidean algorithm, but obviously before dividing by the absolute value of the 
leading coefficient). Hence, 7<> is the solution to the equation aL(7) = 0. This 
equation has many solutions [for any 7 = - f ( x ~ )  where x ~ r  is any of the 
extremal points of the function f].  Therefore, one should start solving it from a 
rather good approximation of 7<>- Let us assume that we start with the bisection 
method to initiate 7 for a faster but less robust algorithm for solving aL(7) = 0. 
Bisection provides two values 7_ and ~ such that 7__ < 7<> < ~ and ~ - 7__ < ebis. 
If ebi, is less than the smallest difference between different extremal values of 
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f ,  then there is usually only one zero 9'(> of aL in (2, 7)" We have chosen the 
secant method (Stoer and Bulirsch, 1993) to solve aL(7) = 0. It starts with two 
approximate values 71 = 7_ and 72 = ff and, for two subsequent approximations 
9'i-1 and 7i, it constructs the zero point 7i+1 of the secant line: 

7i - 7 i -  1 
7 i + 1  = " / i -  1 - -  aL(Ti-1)aLrTi"()  - aL"-i-l"'(9") (3) 

The convergence order of a secant method is (1 + v/5) /2  (Stoer and Bulirsch, 
1993). We terminate the secant iteration when I 7i - 7i-1 I< e,ec. Determining 
the correct number of polynomials in the Sturm chain for W + 9'~ is required in 
order to proceed with the secant algorithm. The last polynomial in the Sturm chain 
for W + 7 ~  is generally of the form: 

X~r ( x )  = ( x  - x~ ) '~' . . . .  . ( x  - x~ 

where ra is the number of global minima of f and P(x )  is a polynomial which does 
not have real zeros. For most practical cases, P ( x )  is just a constant and all cri are 
equal to 1, but of course that should not be generally assumed. In our algorithm we 
used the sum of absolute,values of  coefficients of a polynomial in the Sturm chain 
as the way of determining which polynomial is going to be the last while 9' tends 
to 7 ~. Having found 7__ and ~ by the bisection algorithm, we compare the sum: 

mk 
= I  ki(9') I 

i = 0  

(4) 

with ebi~. The smallest k, for which ~k(7__) < ebis,  is assumed to be the index of 
a polynomial X~+I in the Sturm chain which is going to vanish for 7 = 7 ~ The 
leading coefficient (Xr+l,m~+l of this polynomial is the one which is used to refine 
7 by solving the equation 

by the secant algorithm. However, especially for a low accuracy of the bisection 
initialization (large Ebi~), the correctness of the choice of r should be checked. The 
simple, reliable test is made by checking 77~ +1(9'*) where 9'* is the result of secant 
refinement. For the correct choice of r, not only the leading coefficient of Xr*+l 
but also all other coefficients of this polynomial should be very close to zero. (The 
leading coefficient aL(7*) is very close to zero by virtue of the equation being 
solved). 

3. N u m e r i c a l  E x a m p l e s  

All examples studied were global minimizations in ( - o o ,  oo). We have carried 
out all conversions and symbolic algebra computations as well as the actual global 
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Polynomial  W ( z )  = (z - 5)2{(z - 2)2[(z - 812 + • 1} + 1. Fig. 1. 
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I 

I0 

minimization using the Maple V system, i.e. our programs were written in Maple 
V language. We modified the Maple V library sturm procedure in order to deal 
efficiently with infinite b and c. We also used the library sturmseq procedure 
which constructs the Sturm chain. We have encountered no problem in using 
Sturm chains generated directly by the Euclidean algorithm. Even for difficult 
examples, sturmseq behaved very reliably. We start by presenting a simple example, 
a polynomial with three different local minima: 

! 
= (x - 5)2{(x -- 2)2[(a: - 8) 2 Jr ~0 ] q- 1} + 1 

= x 6 _ 30z 5 + 357.1x 4 - 2141.4x 3 + 6763.9z 2 + 

(5) 

- 10584z  + 6436. 

The global minimum is obviously at z = 5, and the value of the polynomial at 
this point is 1. 

The positions of all extrema and their values are listed in Table I and the function 
is plotted in Figure 1. We used 20-digits arithmetic. The numerical cost of the 
calculation will be expressed hereafter in terms of calls to the procedure generating 
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Fig. 2. The coefficient a6,0 of the Sturm chain polynomial for 

W ( x )  + 7 = (x - 5)2{(ac - 2)2[(x - 8) 2 q- 1 ]  -q- 1} q- 1 + 7 

as a function of 7. 

the Sturm chain named s turmseq .  The first part of the calculation was a rough 
estimation of 7 by the bisection algorithm. The index of the last element in the Sturm 
chain for W + 7 ~ was r 0 = 5. Then the equation O~6,0('~) ~ aL(7)  = 0 was solved 
by the secant method. The required accuracy ebi~ to terminate the bisection was set 
to ebi, = 10 -1, whereas the accuracy for the secant refinement was e~,r = 10 -15. 
The total number of calls to s t u r m s e q  was equal to 13 (8 in initialization and 
bisection and 5 in secant refinement) for x0 = 2 and A ~ = 1. The resulting globally 
minimal value was - 7 *  = 0.99999999999999976244 ( e r r o r  = 2.4 x 10-16). The 
position of  the global minimum as the zero point of the polynomial X~ in the Sturm 
chain for W + 7* was x* = 5.0000000000000000043 ( e r r o r  = 4.3 • 10-18). 
The secant method converges fast but it often requires good initial approximations. 
In order to see how close the initial bisection should approach the solution of  
aL(7)  = 0, we plot aL(7)  = a6,0(7) in the region corresponding to all extremal 
values of  W (Figure 2). The function is zero for all extremal values of W and also 
for 7 = - 19.4958 for which the leading coefficient a4,2(7) of the polynomial X4 
is zero. a6,0(7) is singular for 7 values for which the leading coefficient as, 1(7) of 
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Fig. 3. The solution z of the equation a5,1 (7)z + a5,o(7) = 0 as a function of 7 for the 
Sturm chain for W(z) + 7 = (z - 5)2{(z - 2)2[(z - 8) 2 + ~0] + 1} + 1 + 3'. 

the p o l y n o m i a l  X5 = as,lz + as,0 is zero. Whi le  solving the equat ion O~6,0(')' ) ---- 0 
in the vic ini ty  o f  3' = - 1 one  should  be  so c lose  to - 1 so that the nearest  s ingular i ty  

at 7 = - 8 . 1 6 7 8  does  not  interfere, ebis = 10 -1 which  we  used is safe, but  even 

Ebbs = 1 works  fine. In order  to present  the sensit ivity o f  the posi t ion  o f  the g lobal  
m i n i m u m  calcula ted f r o m  the last po lynomia l  in the S turm chain on the value o f  3' 

we  plot  this funct ion  in Figure  3. 

TABLE I. Positions and values at extrema of 
W(z)  = (x - 5)2{(z - 2)z[(z - 812+ ~o] + 1} + 1 

Position z Value W (z) 

2.009334882840419 
3.252837828322365 
5.000000000000000 
6.800358695400958 
7.937468593436258 

9.972126485849188 
112.506976264750820 

1.000000000000000 
119.200397429823912 
41.237462782539020 

The  next  examp l e  is a p o l y n o m i a l  with two global  min ima:  
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I 

I0 

o 
Wsym(x )  = [ ( x - 2 )  2 +  1 1 [ ( x - 5 )  2 +  ~ ] [ ( x - 8 )  2 +  11 

= x 6 _ 30x 5 + 363.5z 4 - 2270x 3 + 7678z 2 + 

(6) 

- 1 3 2 8 0 x  + 9587.5 

The positions of  all extrema and their values are presented in Table II. A plot 
of  the polynomial  is presented in Figure 4. 

Again, 20-digit arithmetic was used, the accuracies of  the bisection and the 
secant were ebis = 10 -1 and es~c = 10 -15, respectively, and z0 = 5 and A ~ = 1. 
The index of  the last polynomial  in the Sturm chain for 7 = 7 <> for this example 
was assumed to be r <> = 4. After 19 calls to sturmseq (14 in initialization and 
bisection and 5 in secant) the globally minimal value - 7" = 419.8496139818166 
was obtained. The positions of  the two global minima had errors of  2.57 x 10 -16 
and 2.98 x 10 -16. The polynomial  X~' in the Sturm chain for W sym + 7" was 
equal to X~ = - 1 . 3 6  x 10-16x - 3.96 • 10 -15. It, obviously, had a very small 
leading coefficient because that was the criterion to find "y*, but also the second 
coefficient was very small which was a numerical confirmation that r <> was chosen 
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TABLE II. Positions and values at extrema of 
W~ym(x) = [(x - 2) 2 "-1-- 1][(x - 5) 2 -t'- 9][(x - 

8) 2 + 1] 

Position x Value w~ym(x) 

2.520334565932673 

3.767958603877951 

5.000000000000000 

6.232041396122048 

7.479665434067326 

419.8496139818166 

469.5022378700353 

450.0000000000000 

469.5022378700353 

419.8496139818166 

correctly. (The fact that this polynomial has two global minima implies that degree 
of X~ should be at least two and it was equal to 2 but generally it could be greater 
than 2). We have studied the dependence of the coefficient ~ ,0  on the actual 
difference between the values at the lowest and the second lowest minimum of the 
polynomial. In Table III, the polynomial X~" is presented for several polynomials 
W~ = W sy'~ + s minimized in the same way as W ~ym was minimized previously. 
It is clear that the value of c~* 5,0 is a good test for the separation of the two lowest 
minima. In the same table we show errors for positions ofthe two lowest minima of 
We calculated as zeros of X2. In Figure 5 we show plots of the functions c~6,0(7), 
ct5 ,1(7)  and c~5,0(7). The only zero of o~6,0(7) corresponds to the single central 
minimum of W ~ym . Both c~5,t(7) and a5,0(7) have zero value for 7 corresponding 
to the double global minimum and the double maximum of W sy'~ . 

TABLE III. Influence of the difference between minimal values of We assumed to be identical, on 
the polynomial X~ and on the errors of positions of these minima calculated as zeros of X~ 

Value Distance between X~ Error Error 

of ff the two lowest of x T of x~ 

minimal We values for We 

10 -9 4.96 • 10 -9 7.4 X 10-I7x -- 2.08 • 10 -9 1.22 • 10 - l~  1.22 x 10 -m 

10 - s  4.96 • 10 -5 9.0 • 10-17x -- 2.08 • 10 -5 1.22 X 10 -6 1.22 • 10 -6 

10 -1 4.96 • 10 -1 1.6 • 10-1% - 0.208 1.21 x 10 -2 1.23 x 10 -2 

The next group of examples demonstrates how the method performs for high- 
degree rational functions. We have tested a group of functions which are of practical 
importance, truncated Fourier series. Before global minimization by our algorithm, 
the Fourier series needs to be converted into a rational function. This can be 
achieved by expanding sines and cosines of multiple angles in terms of sines and 
cosines of single angles and, then, by substitution: 

2x  
sin a - - -  

l + x  2 
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1 - x 2 
COS O~ - -  

l + z  2 

where z = tan ~; this establishes a mapping from a 6 ( - 7r, 7r) into z E ( - 0o, 00). 
Obviously, the result of this substitution is a rational function which has a global 
minimum in 7-r We used four different truncated Fourier series of the form 

N 

F(a) = ~-~(anCOSna + bnsinna) (7) 
n----1 

The number of terms was chosen as N = 18, and the Fourier coefficients were 
generated according to the following equations: 

Example F1 

an = sin(2n + 9) 

bn = sin(7n - 3) 

Example F2 

an = sin(2n 2 + 6) 

bn = sin(6n + 4) 

Example F3 

an = sin(2n + 6) 

bn = sin(4n - 3) 

Example F4 

an = sin(3 ~) 

bn = sin(7~). 

We do not list here the actual polynomials W and V for these functions since they 
are defined uniquely by the Fourier coefficients. The polynomials are all of degree 
36. 

Plots of function (7) for these four choices of Fourier coefficients are shown in 
Figure 6, and the globally minimal values obtained with 20-digit arithmetic and the 
accuracy of determining the globally minimal value cbi~ = 10 -15 are collected in 
Table IV. The number of calls to sturmseq procedure was 57 for each example. We 
used the robust bisection algorithm to obtain reliable minimal values. The results 
for the secant method are presented later in this section. 
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TABLE IV. Globally minimal values, 
for ebi, = 10 -15, 20-digits arithmetic, 
N = 18, z0 = 0 a n d A  ~ = 4. For 
every example, the number  of calls to 
sturmseq was equal to 57 

Example Globally minimal value 

F1 -9.427079657662615 

F2 -5.904604685207378 

F3 -10.447409929498691 

F4 -8.587921046512747 

TABLE V. Comparison of the global minimum position calculated 
from the last polynomial in the Sturm chain and by the bisection 
algorithm 

Example ce = 

= 2arctan(z_) 
Bisection 

Calls c~ his = 

to sturm = 2arctan(~ biS-llt) 

F1 0.7367992888 53 0.7367992888 

F2 0.4977600271 53 0.4977600262 

F3 0.0003575575 55 -2.1996890318 

F4 -0.0115422839 59 2.8169550460 

The position of the global minimum was calculated both from the last element of 
the Sturm chain (_q_) and also by the bisection algorithm described in section 2 (a_q_ b~s). 
The cost of the bisection algorithm is expressed in terms of the number of calls to 
the procedure s t u r m  which calculates values of polynomials in the Sturm chain at 
the endpoints of an interval. In using two methods, we aimed to establish how safe 
it is to rely on the last element of the Sturm chain for locating the global minimum 
of a rational function. See Table V for results. The estimated separation S of zeros 
of fz  from formula (2) is presented in Table VI. Since cx in the bisection algorithm 

TABLE VI. Separation of zeros of f-r and the value 
of the denominator polynomial V at zero of W + 
7_V 

Example Separation of zeros V(z_ bis-tft) 
of f~_,S 

F1 2.96 x 10 -9 1.22 x 101 

F2 2.68 x 10 -9 3.09 x 10 ~ 

F3 4.36 x 10 -9 2.27 x 1012 

F4 2.41 • 10 -9 3.13 x 1028 
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was chosen as 10 -15, S is a measure of the error  o f ~  his. For examples F1 and F2, 
the root of the last (linear) polynomial in the Sturm chain X___35 is in good agreement 
with the position of a zero of the polynomial X_ 0 = W + 7__V found by the bisection 

algorithm. However, for the other two examples, the accuracy ebi~ = 10 -15 for 
determining the globally minimal value is insufficient to establish the position of the 
global minimum from X35. The reason for this is that the denominator polynomial 
V has a very large value at the zero point z_ of the polynomial X___ 0 = W + 7-V [see 
Table VI for the values of V(x)].  The algorithm terminates when ~ - 7_ < ebi~ so 
that the minimal value of f.y cannot differ from 0 by more than ebi~, but the value 

of the polynomial W + 7V = f ~ V  at x_ may be very large when V(x) is large. 

When Eb~'~ = 10 -15 in examples F3 and F4, the value o f W  + 7_V at x_ may be as 

large as 2 • 10 -3 and 3 • 1013 respectively. Hence, it is necessarry to set ebi~ to 
a very small value in order to be able to learn the position of the global minimum 
from X r . Table VII illustrates this by showing positions for the.examples F3 and 
F4 for higher accuracies, ebi~ = 10 -35 is sufficient to obtain the correct position for 
example F3 but not for example F4. Only to prove that the behavior for example F4 
is due to insufficient accuracy ebis, we repeated the calculations for ebis = 10 -70 

and obtained the correct position of the global minimum from X___~. Since increasing 
accuracy for determining the globally minimal value is expensive (see number of 
calls to the s t u r m s e q  procedure in Table VII), we believe that the cheaper and safer 
way of locating the global minimum for ill-conditioned problems such as F3 and 
F4 is to use the bisection algorithm [one call to s t u r m  is usually faster than a call to 
s tu rmseq ,  although checking for the existence of zeros in ( - c ~ ,  oo) requires only 
checking the sign of leading coefficients without evaluating any polynomial]. 

TABLE VII. Positions of the calculated global minima from X~ for different values of 
~bis 

Exam- Number ebi, Calls to a = 2arctan(x_) ~bi~ = [ 
pie of digits sturrnseq = 2arctan(~ bi~-l]~) 

F3 40 10 -35 123 -2.1996890318 -2.1996890318 
F4 40 10 -35 123 -0.0115422839 2.8169550466 
F4 80 10 -70 240 2 .8169550466 2.8169550466 

The number of calls to the s t u r m s e q  procedure depends on the initial difference 
between the bounds ff - 7__ and the required accuracy eb~, for finding the globally 
minimal value. Since every bisection step divides ~ -  7__ by a factor of 2, the number 
of steps n, necessary to achieve the accuracy ebi~, is the smallest integer n satisfying 
the inequality: 

2 - n ( ~ -  7_) < ebi, 
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or equivalently: 

1 7-_7  
n >  i-~-~ In - -  

~bis 

In other words, the cost of the method depends on ~bis as In ! . 
^ b i q  

We also tested the secant algorithm for the rational tunctlons F1, .. ,F4. We 
learned that, for the examples for which there is no problem in locating the global 
minimum from the last Sturm chain polynomial, there is also no problem in finding 
the globally minimal value by the secant method. For the example F1, using the 
secant algorithm reduced the number of calls to sturmseq from 57 to 22 and, for 
the example F2, the number of calls was reduced from 57 to 25. However, for 
examples F3 and F4, the required initial accuracy s to start the secant method 
and obtain the globally minimal value was at the order of the required accuracy to 
obtain a good position of the global minimum from the last element in the Sturm 
chain. Hence, for these examples, the bisection with ez = 10 -15 was faster. 

The computational cost for each call of sturmseq should be proportional to the 
square of the degree of the polynomial W + 7V. The reason for this is that the 
number of terms in the Sturm chain scales linearly with the degree of the polynomial 
and that the number of coefficients to be calculated for every polynomial in the 
Sturm chain is equal to its degree. To confirm the above estimation, we carried out 
calculations for different numbers of terms N in the Fourier series for example F2. 
(See Table VIII for the timings). Similarly, the sturm procedure scales as the square 
of the degree of a polynomial because the cost of the calculation of the value of a 
polynomial scales linearly with its degree. 

TABLE VIII. Execution time on an IBM 
RISC 6000 computer as a function of the 
number of terms for example F2. Exe- 
cution time involves finding the initial 
bounds ff and 7 as well as bisection for 
% 

Number Calls Execution 

of terms to sturmseq time [sec] 

6 54 22 

12 57 74 

18 57 151 

36 59 643 
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